COND_ELIM_CONV : term -> thm
  |- ....(if p then x else y).... <=>
     (p ==> ....x....) /\ (~p ==> ....y....)
# REAL_ARITH `!a b:real. a + b >= max a b <=> a >= &0 /\ b >= &0`;; val it : thm = |- !a b. a + b >= max a b <=> a >= &0 /\ b >= &0
  # COND_ELIM_CONV `a + b >= (if a <= b then b else a) <=> a >= &0 /\ b >= &0`;;
  val it : thm =
    |- (a + b >= (if a <= b then b else a) <=> a >= &0 /\ b >= &0) <=>
       (a <= b ==> (a + b >= b <=> a >= &0 /\ b >= &0)) /\
       (~(a <= b) ==> (a + b >= a <=> a >= &0 /\ b >= &0))