ETA_CONV : term -> thm

SYNOPSIS
Performs a toplevel eta-conversion.

DESCRIPTION
ETA_CONV maps an eta-redex `\x. t x`, where x does not occur free in t, to the theorem |- (\x. t x) = t.

FAILURE CONDITIONS
Fails if the input term is not an eta-redex.

EXAMPLE
  # ETA_CONV `\n. SUC n`;;
  val it : thm = |- (\n. SUC n) = SUC

  # ETA_CONV `\n. 1 + n`;;
  val it : thm = |- (\n. 1 + n) = (+) 1

  # ETA_CONV `\n. n + 1`;;
  Exception: Failure "ETA_CONV".

COMMENTS
The same basic effect can be achieved by rewriting with ETA_AX. The theorem ETA_AX is one of HOL Light's three mathematical axioms.