MP_CONV : conv -> thm -> thm
# let th = MESON[LE_REFL]
`(!e. &0 < e / &2 <=> &0 < e) /\
(!a x y e. abs(x - a) < e / &2 /\ abs(y - a) < e / &2 ==> abs(x - y) < e)
==> (!e. &0 < e ==> ?n. !m. n <= m ==> abs(x m - a) < e)
==> (!e. &0 < e ==> ?n. !m. n <= m ==> abs(x m - x n) < e)`;;
# MP_CONV REAL_ARITH th;;
val it : thm =
|- (!e. &0 < e ==> (?n. !m. n <= m ==> abs (x m - a) < e))
==> (!e. &0 < e ==> (?n. !m. n <= m ==> abs (x m - x n) < e))