When applied to a pair of terms t1 and t1' which are
alpha-equivalent, ALPHA returns the theorem |- t1 = t1'.
------------- ALPHA `t1` `t1'`
|- t1 = t1'
FAILURE CONDITIONS
Fails unless the terms provided are alpha-equivalent.
EXAMPLE
# ALPHA `!x:num. x = x` `!y:num. y = y`;;
val it : thm = |- (!x. x = x) <=> (!y. y = y)
# ALPHA `\w. w + z` `\z'. z' + z`;;
val it : thm = |- (\w. w + z) = (\z'. z' + z)