NUM_MIN_CONV : term -> thm

SYNOPSIS
Proves what the minimum of two natural number numerals is.

DESCRIPTION
If n and m are numerals (e.g. 0, 1, 2, 3,...), then NUM_MIN_CONV `MIN m n` returns the theorem:
   |- MIN m n = s
where s is the numeral that denotes the minimum of the natural numbers denoted by n and m.

FAILURE CONDITIONS
NUM_MIN_CONV tm fails if tm is not of the form `MIN m n`, where n and m are numerals.

EXAMPLE
  # NUM_MIN_CONV `MIN 11 12`;;
  val it : thm = |- MIN 11 12 = 12

SEE ALSO
NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV, NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV, NUM_MAX_CONV, NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.