NUM_ODD_CONV : conv

SYNOPSIS
Proves whether a natural number numeral is odd.

DESCRIPTION
If n is a numeral (e.g. 0, 1, 2, 3,...), then NUM_ODD_CONV `n` returns one of the theorems:
  |- ODD(n) <=> T
or
  |- ODD(n) <=> F
according to whether the number denoted by n is odd.

FAILURE CONDITIONS
Fails if applied to a term that is not of the form `ODD n` with n a numeral.

EXAMPLE
  # NUM_ODD_CONV `ODD 123`;;
  val it : thm = |- ODD 123 <=> T

  # NUM_ODD_CONV `ODD 1234`;;
  val it : thm = |- ODD 1234 <=> F

SEE ALSO
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV, NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV, NUM_MAX_CONV, NUM_MIN_CONV, NUM_MOD_CONV, NUM_MULT_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.